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Preface

The constantly growing interest in C programming as a result of programming for the
AVR microcontroller family by ATMEL has meant a demand for all kinds of courses and
manuals. So, | decided to write this book to help all those who wish to learn the ins and
outs of this language from scratch. Its aim is to introduce the world of C in the simplest
possible manner to those who so far have had no contact with programming and do not
know what language to learn in order to effectively and quickly program the
microcontrollers.

Why C? When the first microprocessors were designed software development was
closely associated with the specific machine language of each microprocessor. This
resulted in the need to write programs for specific devices. Assemblers, the lowest level
languages, were based on mnemonics that replace the real machine language
understandable to the numeric processor. To avoid the necessity of writing programs as
a sequence of hexadecimal digits, such as “Ox3A, 0x1B, 0x41, 0x05”, which would cause
the number 22 to be stored to the specified RAM memory cell, one could use
mnemonics for such orders. Thus, this sequence of digits and letters could be replaced
in the assembler with a more user-friendly command, such as “MOV BUFFER, 22”. The
assembler compiler translates the mnemonic into the sequence of numbers recognized
by a specific microcontroller.

In short, the assembler is the lowest form of machine code understandable by man.
Writing programs in pure assembler is certainly possible, and many years of experience
allow us to achieve significant efficiency from programs written in this manner. In order
to write the lowest-level programs well and efficiently, you have to spend many years
learning, and still, writing larger programs becomes cumbersome, lengthy and requires
time to test and verify because of all kinds of errors. In addition, a program written in a
specific machine code for one processor is very difficult to move to another type.
Sometimes it is not even possible and the program has to be written again from scratch.
In such a situation, C is very helpful.

It is a general-purpose language that can be used for any microcontroller supported by a
C compiler. Nowadays, there are almost no processors that cannot be programmed in C.
It is even normal that manufacturers do not provide assemblers for their products,
offering only the C compiler instead. With C you can quickly and easily move between
various families of microcontrollers; write and test programs much faster, more



effectively and efficiently; and, create code that is much easier to learn, understand and
remember.



Introduction

Ever since | learned C, | was charmed by its capabilities, simplicity and programming
logic. Today, | notice a specific approach taken by many people who, after the first
attempts to self-study C, are quickly discouraged because of the supposed complexity of
the language’s rules. Meanwhile, the real reason is often a lack of literature describing C
language based on practical examples that let you solve a large number of problems on
the fly. There are a few books available on C, especially in terms of programming AVR
microcontrollers, written for people who do not yet have experience with programming
in general. | gained a lot of experience that went into writing this book while giving
courses on AVR GCC language for AVR processors. Thus, one of the goals of this
publication is to raise interest in this extremely pleasant and easy language among
people who are at a crossroads and must choose which way go to be able to effectively
and easily program a whole family of AVR microcontrollers.

Since practical learning of C is difficult in isolation from hardware, which in our
particular case are the AVR microcontrollers, it is therefore necessary to explain the
principles of operation of those processors. Most examples in this book refer to the
ATmega series, but | will try to show that since we will use C the programming of the
ATtiny microcontroller series is practically identical. The only differences are some
limitations resulting from hardware capabilities.

With the above assumptions, this book is addressed to a wide range of readers who are
looking for any information on these topics. | will try to use simple, sometimes colloquial
language to discuss a more complicated issue. At first glance, the structure of the book
may seem a bit chaotic because it does not describe the issues sequentially and
systematically in isolation from each other. There is no introduction of the AVR
microcontroller family, a description of pure C language, or chapters that deal
separately with programming environments, programmers or how to physically upload
programs to the microcontroller. | wrote the book in the form of a course in which |
present material to participants during classes—lectures on theory are interspersed
with practice—or workshops in which everybody can learn how to write and test their
own programs under the supervision of the instructor. This allowed me to make smooth
transitions from subject to subject. So although the material may not be in separate
sections, in a logical order | try to give the information as soon as you should be able to



assimilate it. In a sense, this was proven in practice. Think of this book as a good guide
helpful in crossing the jungle of digital electronics and programming.



1 Getting Started

At the beginning | would like to teach you how to write code for a new program in C,
regardless of the target processor, system or compiler used. First, you always need to
create the main program function. In C, we use functions all the time and there is no
doubt that this is a huge advantage compared to other programming languages.

1.1. First Empty C Program

This will be a very simple but versatile program, which incidentally is idle all the time,
although when the processor is idle it does not mean that it is not busy. In simple words,
one can say that the program is composed of one idle process occupying 100% of the
microcontroller's time. Let's see how the body of this empty program looks.
Symbolically, you can write it as follows:

mai n()

{
}

It is not possible to compile such a program. It is only a function backbone in C. Because
of this generic layout, the compiler recognizes a function. You can see the name of the
function, in this case mai n, as indicated by the two parentheses () that follow the name.
The curly braces {} mark the beginning and end of the area in which the function code is
written.

REMEMBER

If anywhere in the code you encounter notation like f un() , this means that you see a
function called f un, and there can be any name, for example: max(), get (), etc.

The compiler cannot perform a complete analysis of such code because something is
still missing. Each function definition, without exception, must be more specific: the
type of arguments that are passed to it, and the type of result that it returns. C also
provides a special type called voi d, which means that the type of function arguments
may be undefined. Void, as it turns out, also simply means "empty type" when declaring
variables or pointers.



